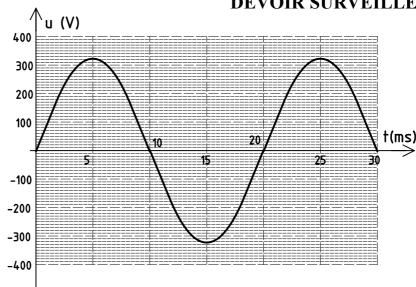
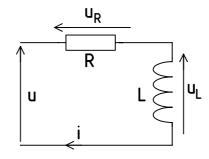
T Prod 1


DEVOIR SURVEILLE N°1

EXERCICE N°1

Soit la tension suivante :

Déterminer :


- 1°) la période,
- 2°) la fréquence,
- 3°) la pulsation,
- 4°) la valeur maximale,
- 5°) la valeur efficace,
- 6°) la valeur moyenne.

EXERCICE N°2

Soit le circuit suivant :

On donne: f = 50 Hz $R = 120 \Omega$

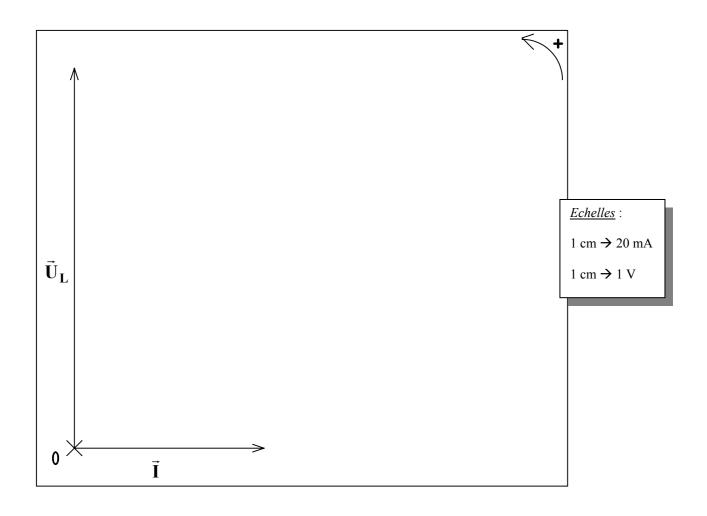
On donne en annexe la représentation des vecteurs associés à i(t) et u_L(t).

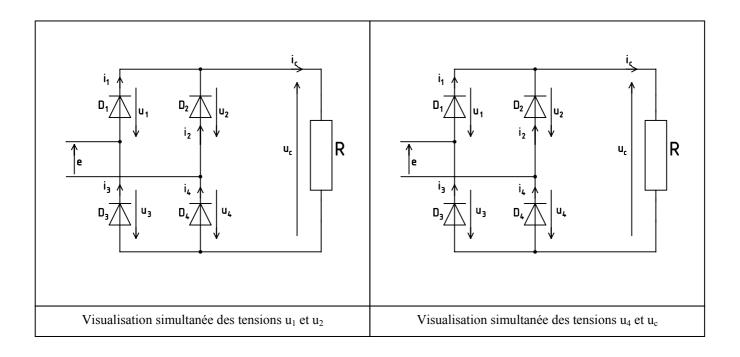
- 1°) Déterminer l'impédance Z_R du résistor R.
- 2°) A l'aide de la représentation de Fresnel (donnée en annexe), déterminer l'intensité efficace I du courant et en déduire la valeur efficace U_R .
- 3°) En complétant la construction de Fresnel sur l'annexe, déterminer la valeur efficace de la tension u(t) aux bornes du circuit ainsi que la différence de phase du circuit.
- 4°) En déduire l'impédance Z du circuit.

EXERCICE N°3

Une installation électrique, alimentée par le réseau 230 V / 50 Hz, est constituée de :

- * un moteur de puissance active $P_1 = 2000 \text{ W}$ et $Q_1 = 1500 \text{ var}$
- * un moteur de puissance active $P_2 = 3000 \text{ W}$ et de facteur de puissance $\cos \varphi_2 = 0.8$
- * un radiateur (résistance) de puissance $P_3 = 3000 \text{ W}$.


1°) Déterminer :


- a) la puissance active P_t consommée par l'installation,
- b) la puissance réactive Q_t de l'installation,
- c) la puissance apparente S_t de l'installation,
- d) l'intensité efficace It du courant appelé par l'installation,
- e) le facteur de puissance de l'installation.
- 2°) Déterminer la capacité du condensateur à placer en parallèle sur l'installation permettant de relever le facteur de puissance à 1.

EXERCICE N°4

Représenter en annexe les branchements d'oscilloscope.

ANNEXE

